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Abstract— User preferences have an essential role to play in
decision making in pervasive systems. However, building up
and maintaining a set of user preferences for an individual
user is a nontrivial exercise. Relying on the user to input
preferences has been found not to work and the use of different
forms of machine learning are being investigated. This paper is
concerned with the problem of updating a set of preferences
when a new aspect of an existing preference is discovered. A
basic algorithm (with variants) is given for handling this
situation. This has been developed for the Daidalos and Persist
pervasive systems. Some research issues are also discussed.

Keywords- user preferences; pervasive systems; machine
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L INTRODUCTION

Since the initial vision of ubiquitous environments was
proposed in the early 1990s, many projects have attempted
to achieve this vision using increasingly ambitious
techniques. An innovation of initial projects such as
Microsoft’s Easy Living project [1] was context-awareness
(which is now taken for granted in achieving pervasiveness).
In this case much effort was focused on gathering
information regarding the situation of users rather than the
users themselves. As a consequence, environments adapted
in exactly the same way for different users, regardless of
individual needs or characteristics.

Projects such as IBM’s Blue Space [2] and Intelligent
Home [3] identified the benefits of personalization
mechanisms and incorporated user preferences into system
decision-making. This allows for adaptation specific to the
needs of individual users. The preference set is created and
maintained explicitly by the user through some GUL
Unfortunately the burden on the user to perform such
information management tasks is great and hence users
avoid it. This leads to sparse preference sets and basic
personalization.

The need for more complete preference sets was soon
realized. However, in addition to the problem of obtaining a
more complete initial set of preferences, there is a
continuing need for maintenance of the set of preferences.
This is due to the fact that user needs will change with time
for a variety of reasons, e.g. changes in lifestyle (moving
house, starting a new job, going on holiday, etc.), the

availability of new services or simply due to a ‘change of
mind’. Such changes will impact on the user’s preference
set requiring revisions to keep all preferences up to date.
Ultimately the user should be given final control over their
preference set but it was realized that, where possible,
implicit techniques should be implemented to support the
user and maintain the preference set on his/her behalf in an
unobtrusive way. In such a system, preference adaptation
will occur explicitly (via user input through some preference
GUI) or implicitly (using machine learning).

For these reasons many projects include implicit
learning techniques with monitoring and learning
mechanisms to create and maintain the user’s preference set
unobtrusively on their behalf. The Adaptive House [4],
MavHome [5] and GAIA [6] have full automation as their
key goal. There is no support for explicit user input, all
preference adaptation occurs implicitly. ~However, the
offline nature of the learning algorithms employed could
lead inevitably to frustrating situations where user behaviour
has changed but the preferences do not reflect this. The
Synapse project [7] attempts to remedy this problem by
providing a distinction between preferences that have a high
system confidence and preferences with a low system
confidence. Several projects, such as Mobilife [8] and Spice
[9], process information in real-time as well as processing
stored history data in batch mode in order to provide a quick
response to behaviour changes.

Allowing for explicit adaptation requires that
preferences can be presented to the user in a human-
readable format so that revisions can be made manually. In
this case the solution lies in designing effective GUIs to
facilitate this.

However, the use of implicit adaptation presents further
challenges. For example, whenever new preferences are
discovered they need to be merged with the existing
preferences in a way that will hopefully make sense to the
user if he/she views them. Conflicts may arise during the
preference updating process and expecting the user to make
the final decision is often not possible since the user may
not be present to provide input (e.g. if the preference
learning and updating cycle is running overnight). Therefore
policies must be in place to indicate how implicit processes
should overcome conflicts.
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This paper describes a basic algorithm (with variants) for
doing this.

Daidalos is a large European research project, a major
aim of which is to develop a pervasive system [10],
focussing especially on mobile users while Persist is another
European project focussing on Personal Smart Spaces. The
algorithm outlined here has been developed for use in both
the Daidalos and Persist pervasive systems.

The next section provides a brief illustration of the
problem. Section 3 presents the algorithm to handle the
problem of preference merging. Section 4 discusses briefly
how this is used in the Daidalos pervasive system. Section 5
discusses some research issues that still need to be addressed.

II.  ILLUSTRATION OF THE PROBLEM

As we have noted, the main problem with user
preferences is the difficulty in obtaining them and in
keeping them up to date. One could ask the user to input a
set of preferences and change them appropriately when
required but this has been found not to work. One could
provide a set of stereotypes to assist the user in setting them
up but these will only approximate the user’s real
requirements and one still has the problem of dealing with
new requirements or changes to the existing set with time.
One could rely on machine learning techniques but these on
their own are not sufficient.

The ideal solution lies in a combination of user input and
machine learning. If one uses a rule based format that is
easy for the user to understand and for machine learning
techniques to generate then it is possible for the user to
create preferences whenever he/she wishes or for machine
learning techniques to create or amend the set of preferences
at any stage. Equally the user can at any stage view the
consolidated set of preferences and change them as needed.

Consider the following simple example. When our user,
John, sets up his preferences initially, he creates a
preference for “VolP” (Voice over IP). He sets this up to
select MSN Messenger when he is at home (as it contains
his personal contacts) and Skype while at work (as it
contains his business contacts). Suppose that he has a “User
Agent” (or whatever one wants to call this software) running
on his PDA through which he communicates with the
system. This means that whenever he selects “VoIP” on his
PDA at home the system will select and start MSN
Messenger while at work it will select and start Skype, i.e.

IF location = home

THEN

voip = MSN Messenger

ELSEIF location = work

THEN

voip = skype

However, the machine learning system will monitor
John’s actions and may notice that when he is in his car he
also selects Skype and when he is walking around in town
he also selects MSN Messenger. In these cases it would

want to create new sub-rules and preferably merge these
with the existing rule to create a single composite rule for
“VoIP”.

IF location = home OR location = town

THEN

voip = MSN Messenger

ELSEIF location = work OR location = car

THEN

voip = Skype

Besides service selection, user preferences may be used
to personalize the services themselves in various ways. For
example, if John goes into a lecture room, he may switch his
mobile phone to silent mode. If he does this several times
the machine learning system will create a preference rule
that sets the parameter for the mobile phone service
automatically when this occurs. This situation was
demonstrated in the Daidalos system. Similarly, telephone
calls may be redirected depending on the caller and the
user’s context (again demonstrated in Daidalos). Once again
this can be learnt and stored as a preference. And so on.

Here we are assuming that obtaining location information

is no problem. This is one of the fundamental assumptions of
most ubiquitous/pervasive systems. We are also assuming
that location can be handled as a discrete variable with a
small set of relevant values. This will be discussed further in
section 5. If one includes time as a possible variable this too
must be handled as a discrete variable. Another important
variable is the current task, which is already discrete.

III.  ALGORITHM FOR MERGING

In order to learn from the user’s actions, a record must be
maintained of the history of these actions. In the case of user
preferences, the actions indicate either user acceptance of
the system decision based on the preferences or rejection of
it (i.e. success/failure).

In our case a dual store approach is used [11] consisting
of short-term (since the last data mining operation) and
long-term (the complete set as far as possible) components.
This section outlines the different situations that can arise
when merging existing preferences from the user’s profile
with new preference information (obtained from mining the
short-term component) and hence the basic algorithm.

The format used for user preferences in Daidalos is a
simple or nested IF-THEN-ELSE rule. The condition part of
the IF-THEN-ELSE is a Boolean expression consisting of
context comparisons of the form context attribute, relational
operator, context value joined with AND, OR and NOT.
Daidalos context is as defined in [12, 13]. The THEN-part
and ELSE-part can be another IF-THEN-ELSE construct, an
assignment statement (attribute = value) or a constraint of
the form

attribute relationalop value
where the attribute is the name of the parameter being
personalized (e.g. volume) and is also equal to the



preference name, and the value is a possible value of the
personalizable parameter. When a preference is evaluated
the result is referred to as the preference outcome and this is
also a tuple of the form attribute, operator, value, where
operator is either assignment or a relational operator.

In addition each preference outcome has associated with
it a confidence level. This reflects the degree of confidence
that the outcome is correct for the related context conditions
at any point in time. For example, when the user creates a
rule, the confidence levels of the outcomes are set to 1 but
as it is updated, the levels may be any number >0 and <=1.

During the preference learning process, initial confidence
levels are calculated for each learned preference outcome.
They indicate how often a particular outcome has been
observed with the related context condition in the user’s
behaviour history. Such information can help resolve
conflicts that occur while updating the user’s preference set
with new learned preferences. Confidence levels also
infiltrate through to personalization processes where they
determine how and if a preference outcome should be
applied.

When merging preferences, the basic rule that is adopted
is to take the disjunction of the two. Boolean algebraic laws
may be used to simplify rules when they become complex.

Consider now the different situations that can occur when
merging existing preferences from the user’s profile with
new preference information created by the learning
components. These form the basis for creating algorithms
for merging preference conditions.

Situation 1
Preference Conditions: Identical
Preference Outcomes: Different

In this case, there is a preference stored in the user’s
profile that indicates that:
IF A==a THEN X=x
while the new preference information indicates that:
IF A==a THEN X=y

This represents a direct conflict between what was
believed to be true and the new observation.
Solution: There are three ways to handle this situation:

a) Between the old and new preference, discard the
preference with the lowest confidence level and decrease the
confidence level of the preference with the highest
confidence level using an appropriate algorithm. The
algorithm should enforce the rule that the lower the
confidence level of the weaker preference, the less the
confidence level of the stronger preference should be
reduced. e.g. if Preference P1 has confidence level of 0.65
and Preference P2 has a confidence level of 0.10 then P1
has a higher probability that it is correct than P2 so the
confidence level of P1 should not be reduced too much. If
Preference P2 has a confidence level of 0.60, this means that

both preferences have roughly the same probability of being
correct and thus the confidence level of the stronger
preference should be decreased significantly. The weaker
preference is discarded.

b) Instruct the learning component to extract all relevant
actions from the long-term history and re-mine the data for
this preference name, resolving the conflict.

¢) Prompt the user to select which preference should
remain and which one should be discarded or allow the user
to edit the preference to explicitly state her wishes.

Situation 2
Preference Conditions: Identical
Preference Outcomes: 1dentical

In this case there is a preference stored in the user’s
profile which indicates that:
IF A==a THEN X=x
New preference information indicates exactly the same:
IF A==a THEN X=x

Solution: Since the information is the same, the
confidence level of the existing preference is reinforced,
thereby raising it. The formula used in situation 1 to
determine the confidence level of the existing preference is
used to recalculate it. In this case, the new confidence level
will be higher because the number of times this preference
has been inferred is higher than the previous time the level
was calculated.

Situation 3

Preference Conditions: Different (variable)

Preference Outcomes: Identical

here

There are 4 different situations

depending on the conditions:

component

Context attributes: All different
Context attribute values: Not Applicable

Here the context attributes that make up the condition of
the existing preference are all different from those of the
new preference. Thus the two conditional parts are merged
using an OR operation.

Existing preference

}FFH%;:XZLX Merged Preference
IFA==aORB==
New Preference >— THEN X =x
IF B==
THEN X=x




Situation 3.2
Context attributes: 1dentical
Context attribute values: Different

In this situation, all context attributes that make up the
preference condition of the existing preference match those
of the preference condition of the new preference. However,
they each have different values. Once again the conditions
can be joined by an OR operation, with no need to do
anything else. If AND had been used, one would have to
ensure that one did not end up with an expression of the
form IF A==a AND A = =D (always false). Therefore

Existing preference

IFA==a )
THEN X=x

Merged Preference

IFA==aORA==aa
THEN X =x

New Preference

IF A==aa
THEN X=x

-

_
Situation 3.3

Context attributes: Some different, some identical
Context attribute values: Different

In this situation some context variables are different and
some are the same but with different values. Once again the

conditions are joined with an OR operation.

Existing preference

IF A==
OR B= i Merged Preference
THEN X=x IF A= =a OR B==b OR

(A ==aa AND C==c¢)

New Preference THEN X =x

IF A==aa
AND C==¢
THEN X=x

Situation 3.4
Context attributes: Some different, some same
Context attribute values: Identical

Some context attributes are different, the rest are the
same with the same values. Again they are joined with an
OR.

Existing preference

IF A==a B

OR B==
THEN X=x

Merged Preference

IF A==a OR B==b OR
(A==a AND C==c)
THEN X = x

-

ew Preference
IF A==a
AND C==¢
THEN X=x

_

Applying transformations this could be simplified to:

IF A==aOR B==b
THEN X =x

Situation 4
Preference Conditions: Different (variable)
Preference Outcome: Different

As in Situation 3, this situation also has subcategories:
Situation 4.1
Context attributes: All different
Context attribute values: Not Applicable

Here all context attributes in the conditions of both
preferences are distinct. Create a nested IF-THEN-ELSE

rule.

Existing preference

IFA==a ) Merged Preference
THEN X=x
I[FA==a
New Preference >_ THEN X =x
IF B== ELSEIFB==
THEN X=y THEN X =y

_

One problem here is the possibility that expressions
<A == a> and <B = = b> both evaluate to true and the order
in which they exist in the IF-THEN-ELSE construct will
define which outcome will be executed.

The solutions are:

a) Check the confidence levels of each IF-THEN branch.
Set the condition with highest confidence level as the first
condition to be evaluated and the other as an ELSE
statement. This ensures that the condition with highest
confidence is always executed when it is true.

For example, if A = = a has a lower confidence level
than B = =D then the merged preference would be:



IFB==
THEN X =y

ELSEIFA==a
THEN X = x

b) Instruct the learning component to re-mine the long-term
history and replace the preference with the outcome of the
mining algorithm.

Situation 4.2
Context attributes: All same
Context attribute values: All different

Here all the context attributes from the condition part of
the existing preference are the same as those of the new
preference but their values are all different. Create a nested
IF-THEN-ELSE rule.

Existing preference

FA==a | )
THEN X=x Merged Preference
IFA==a
New Preference >_ THEN X =x
IF A==aa ELSEIF A == aa
THEN X=y THEN X =y

_

Situation 4.3
Context attributes: Some different, some same
Context attribute values: All values different

Some context attributes are different between the two
preferences, some are the same but have different values.

Again create a nested IF-THEN-ELSE rule.

Existing preference

IFA==a \
ORB== Merged Preference
THEN X=x I[FA==aORB==b
THEN X =x
New Preference >_ ELSEIF A = = aa
ANDC==¢
IFA==aa _
AND C= = ¢ THEN X =y
THEN X=
Yo

One problem here is that there is a possibility that the
expressions <A ==aOR B==b>and <A ==aa AND C =
= ¢> both evaluate to true and the order in which they exist
in the IF-THEN-ELSE construct defines which outcome
will be executed.

Possible solutions include:

a) Check the confidence levels of each IF-THEN branch.
Set the condition with highest confidence level as the first
condition to be evaluated and the other as an ELSE
statement. This ensures that the condition with highest
confidence is always executed when it is true.

For example,if A==aaand C==c THEN X =x hasa
higher confidence level than A ==a OR B==b THEN X =
y then the merged preference would be:

IFA==aaandC==c

THEN X = x
ELSEIF A==aORB==
THEN X =y

b) Instruct the learning component to re-mine the long-term
history and replace the preference by the outcome of the
mining algorithm.

Situation 4.4
Context attributes: Some different, some same

Context attribute values: All values same

In this situation, some context attributes are different
while some are the same with the same values.

Existing preference

[FA==a [N
ORB == Merged Preference (Intermediate)
THEN X=x
IFA==aORB==b
New Preference >— ELEI::]IE;IAX:X

==a
I[FA==a AND C==¢
AND C ==c THEN X =y
THEN X=y | J

Suppose that the new preference has a higher confidence
level than the existing one. Then the order of the conditions
will be reversed, i.e.

Final Merged Preference

IFA==aandC==c¢

THEN X =y
ELSEIFA==aORB==
THEN X = x

IV. THE DAIDALOS PERVASIVE SYSTEM

Daidalos is a large European research project, whose
overall aim is to create a pervasive environment for mobile
users by integrating a range of heterogeneous networks and
devices and creating a pervasive system on top of this. This
will protect the user from the complexity of the underlying
infrastructure while providing personalized and context
aware services with minimal user intervention. The research
is divided into two phases with slightly different objectives,



spread over a five year period. The work is now in its final
stages.

The pervasive system (or pervasive service platform) is
based around the following six functions:

(1) Service Discovery and Selection.

(2) Service Composition.

(3) Session Management.

(4) Personalization.

(5) Context Management.

(6) Security and Privacy.

In the first phase capture of user preferences was done
manually while in the second phase different learning
techniques were included to support the build up and
maintenance of the user profile. This necessitated the
incorporation of some form of preference merging and for
this an instance of the algorithm outlined in section 3 was
used.

In our implementation one could have more than one
preference rule associated with the same action (e.g.
selecting a service or personalizing a particular parameter
for a service). Each rule has a confidence level associated
with it and when evaluating a preference the rule with the
highest confidence level is selected. The reason for
maintaining multiple rules is that these rules with lower
confidence levels may become important as one discovers
new preference information.

To handle the re-evaluation of confidence levels
(Situation 1), the following general parameters were
considered to be important:

a) The time that has elapsed since the last occasion when
the preferences were updated (t,).

b) The number of times the application of the outcome was
reversed by the user (n,).

c) The time that has elapsed since the last occasion when the
application of the outcome was reversed by the user (t,).

d) The lifespan of the preferences (t,).

In addition the following factors are relevant to each
specific preference rule:

(e) The confidence level of the existing preference (C.),
(f) The number of times that it has been inferred (n;),

From these factors the following are derived:

C.,: updated confidence level of existing preference
Crew : confidence level of new preference.

Using the algorithm shown in Fig. 1, the confidence
levels of the preferences are updated and then stored.
During the evaluation of the preferences, the system uses
the one with the highest confidence level ignoring the
preferences with lower confidence levels.

Set
preference no-- no-»| _
axists Crew = Co +B
T
yes i l
v ¥ Store new
preference
Calculate Cay Calculate Cay
and Grew and set :
Crew = A
Y
o i Set __{ Store both
Ceu e Coi = Can - preferences
Ve A Set
CI'IEW = CHEW ¥ C

Figure 1. Algorithm used for confidence level update

In implementing the algorithm for preference merging
itself, at every point where more than one option was
available, the first option was selected.

Furthermore, for the constants in Fig. 1, the following
values were used:

A=025
B=0.01
C=0.20

Following a brief empirical evaluation of these choices
for the solution which showed that they work adequately,
this approach has been implemented and will be
demonstrated shortly.

V. SOME RESEARCH ISSUES

(1) One of the biggest research issues is the choice of
machine learning technique to use. In both Daidalos and
Persist we are experimenting with three different types of
techniques — rule-based, Bayesian and neural net. This paper
is concerned with the first of these. We are also using a
combination of offline data mining and online incremental
learning. However, there are many different techniques
available and the question remains as to which is the best
technique to use in which situations and how frequently it
should be applied. Much work remains to be done here.

(2) When a new user preference is found, it must be due
to one of the following:

(a) The user’s behaviour has changed and we have
discovered a pattern in the new behaviour (new).

(b) A new condition has arisen and we have discovered a
pattern for this new condition (addition).



(c) A temporary change in the user’s behaviour has
occurred but should not result in a change to the preference
(temporary).

(d) An old pattern has been re-discovered but the user’s
behaviour has changed and the preference has been updated
to reflect the new behaviour (old).

Thus another major problem lies in distinguishing
whether the newly identified rule is a permanent change in
the user’s preferences or a temporary one that should not
result in an update to the user’s preferences. To resolve this,
the user should be involved whenever this is possible.
However, with offline data mining this is not always
possible.

(3) There is an infinite set of possible formulas for
calculating and re-calculating confidence levels. For
example, one might include the average time between
inferences. Determining the ideal set of formulas is a subject
of further research.

(4) Simplifying the conditions of rules for completely
general formulae is NP-complete. However, for the types of
rules we are generating some simplifications are possible
and it is desirable to try to present to the user simplified
rules wherever this can be done.

(5) As noted previously, we are not concerned here with
the problems of context awareness and maintaining an
accurate set of context values. We are assuming that the
context system can obtain the user’s location and provide it
as a small set of strings with which the user is familiar. In
the case of time, we are assuming that this can be divided
into a small set of appropriate intervals in a similar fashion.
Although these are important challenges in themselves, they
are being addressed by others.

(6) Extending the ideas to the learning of preferences for
groups of users presents a further challenge.

VI. CONCLUSION

The problem of building up and maintaining a set of user
preferences for an individual user in a ubiquitous or
pervasive environment is a nontrivial problem. And yet it is
one of the most important issues that need to be solved if
such systems are to be acceptable to the user.

In the Daidalos project a pervasive system is being
developed in which different techniques are used to assist in
this task.

This paper addresses one of the problems that need to be
dealt with in building up user preferences — namely that of
merging newly discovered preferences with existing ones. It
presents a basic algorithm for solving this problem. This has
been developed for use in the current implementation of the
Daidalos prototype and will be further studied in the
implementation of the Persist pervasive system.
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